Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biometals ; 36(3): 385-390, 2023 06.
Article in English | MEDLINE | ID: covidwho-20244446
2.
Food Funct ; 13(23): 11954-11972, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2119428

ABSTRACT

Lactoferrin (Lf) is a natural iron-binding globular glycoprotein, present mainly in milk. It maintains human health through its multifunctional activities, including immunomodulation, iron metabolism, and antioxidant and prebiotic efficacy. It also shows anti-microbial, anti-fungal, and anti-viral activities against a broad spectrum of viruses, including SARS-CoV-2 that causes COVID-19. In addition, several investigations established that Lf is involved in bone metabolism, neural development, and metabolic disorders. In this review, we summarize the in vitro and in vivo studies on the health benefits of Lf and its bioavailability. Furthermore, we briefly describe the production, industrial applications and future prospects of Lf.


Subject(s)
COVID-19 , Lactoferrin , Humans , Animals , Lactoferrin/metabolism , SARS-CoV-2 , Milk/metabolism , Iron/metabolism
3.
Oxid Med Cell Longev ; 2022: 2187696, 2022.
Article in English | MEDLINE | ID: covidwho-2020478

ABSTRACT

Bovine lactoferrin (bLf) is a multifunctional protein widely associated with anticancer activity. Prostate cancer is the second most frequent type of cancer worldwide. This study was aimed at evaluating the influence of bLf on cell viability, cell cycle progression, reactive oxygen species (ROS) production, and rate of apoptosis in the human prostate cancer cell line (DU-145). MTT assay and trypan blue exclusion were used to analyze cell viability. Morphological changes were analyzed through optical microscopy after 24 h and 48 h of bLf treatment. FITC-bLf internalization and cellular damage were observed within 24 h by confocal fluorescence microscopy. Cell cycle analyses were performed by flow cytometry and propidium iodide. For caspases 3/7 activation and reactive oxygen species production evaluation, cells were live-imaged using the high-throughput system Operetta. The cell viability assays demonstrated that bLf induces cell death and morphological changes after 24 h and 48 h of treatment compared to control on DU-145 cells. The bLf internalization was detected in DU-145 cells, G1-phase arrest of the cell cycle, caspase 3/7 activation, and increased oxidative stress on bLf-treated cells. Our data support that bLf has an important anticancer activity, thus offering new perspectives in preventing and treating prostate cancer.


Subject(s)
Lactoferrin , Prostatic Neoplasms , Apoptosis , Cell Survival , Humans , Lactoferrin/metabolism , Lactoferrin/pharmacology , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Reactive Oxygen Species/metabolism
4.
J Food Biochem ; 46(10): e14352, 2022 10.
Article in English | MEDLINE | ID: covidwho-1961634

ABSTRACT

Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.


Subject(s)
COVID-19 , Capsicum , Dry Eye Syndromes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Benzalkonium Compounds , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/genetics , Fruit/metabolism , Gene Expression , Glutathione Peroxidase/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation Mediators , Interleukin-2/metabolism , Interleukin-4 , Interleukin-6/metabolism , Lactoferrin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Pandemics , Rats , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Xanthophylls
5.
Biochem Cell Biol ; 100(4): 338-348, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1932794

ABSTRACT

Bovine lactoferrin (bLF) is a naturally occurring glycoprotein with antibacterial and antiviral activities. We evaluated whether bLF can prevent viral infections in the human intestinal epithelial cell line Caco-2. To assess antiviral responses, we measured the levels of interferon (IFN) expression, IFN-stimulated gene expression, and infection with a pseudotyped virus bearing either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein or vesicular stomatitis virus (VSV)-G protein after treatment of cells with both bLF and polyinosinic-polycytidylic acid, an analog of double-stranded RNA that mimics viral infection. Combination treatment of cells with both bLF and polyinosinic-polycytidylic acid increased mRNA and protein expression of several IFN genes (IFNB, IFNL1, and IFNL2) and IFN-stimulated genes (ISG15, MX1, IFITM1, and IFITM3) in Caco-2 cells. However, treatment with bLF alone did not induce an antiviral response. Furthermore, combination treatment suppressed infection of the SARS-CoV-2 pseudotyped virus more efficiently than did bLF treatment alone, even though combination treatment increased the expression of mRNA encoding ACE2. These results indicate that bLF increases the antiviral response associated with the double-stranded RNA-stimulated signaling pathway. Our results also suggest that bLF and double-stranded RNA analogs can be used to treat viral infections, including those caused by SARS-CoV-2.


Subject(s)
COVID-19 , Lactoferrin , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Caco-2 Cells , Humans , Lactoferrin/metabolism , Membrane Proteins/metabolism , Poly I-C , RNA, Double-Stranded , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2
6.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: covidwho-1855645

ABSTRACT

The present investigation focuses on the analysis of the interactions among human lactoferrin (LF), SARS-CoV-2 receptor-binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) receptor in order to assess possible mutual interactions that could provide a molecular basis of the reported preventative effect of lactoferrin against CoV-2 infection. In particular, kinetic and thermodynamic parameters for the pairwise interactions among the three proteins were measured via two independent techniques, biolayer interferometry and latex nanoparticle-enhanced turbidimetry. The results obtained clearly indicate that LF is able to bind the ACE2 receptor ectodomain with significantly high affinity, whereas no binding to the RBD was observed up to the maximum "physiological" lactoferrin concentration range. Lactoferrin, above 1 µM concentration, thus appears to directly interfere with RBD-ACE2 binding, bringing about a measurable, up to 300-fold increase of the KD value relative to RBD-ACE2 complex formation.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Lactoferrin , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Humans , Lactoferrin/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Interaction Domains and Motifs , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
7.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Article in English | MEDLINE | ID: covidwho-1437673

ABSTRACT

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Colitis, Ulcerative , Disulfiram/pharmacokinetics , Lactoferrin , Systemic Inflammatory Response Syndrome , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Biomimetic Materials/pharmacology , COVID-19/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Disease Models, Animal , Disulfiram/pharmacology , Drug Carriers/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Lactoferrin/metabolism , Lactoferrin/pharmacology , Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Nanoparticles/therapeutic use , Pyroptosis/drug effects , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , Treatment Outcome
8.
J Matern Fetal Neonatal Med ; 35(25): 7707, 2022 12.
Article in English | MEDLINE | ID: covidwho-1345685
9.
Cells ; 10(7)2021 07 17.
Article in English | MEDLINE | ID: covidwho-1323129

ABSTRACT

Central nervous system (CNS) diseases are currently one of the major health issues around the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflammatory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS) modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases. Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread attention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However, our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited, especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the understanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative diseases, cerebrovascular disease, developmental delays in children, and brain tumors.


Subject(s)
Central Nervous System Diseases/metabolism , Lactoferrin/metabolism , Animals , Brain/embryology , Brain/pathology , Child , Child Development , Humans , Neurodevelopmental Disorders/pathology
10.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: covidwho-1256562

ABSTRACT

A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth-which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus.


Subject(s)
Anti-Infective Agents/pharmacology , COVID-19/immunology , Infectious Disease Transmission, Vertical/prevention & control , Lactoferrin/pharmacology , Placenta/immunology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , COVID-19/complications , Female , Humans , Infant, Newborn , Lactoferrin/metabolism , Placenta/pathology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/immunology
12.
Front Immunol ; 11: 1221, 2020.
Article in English | MEDLINE | ID: covidwho-613407

ABSTRACT

Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.


Subject(s)
Heparan Sulfate Proteoglycans/metabolism , Lactoferrin/physiology , Lactoferrin/therapeutic use , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/prevention & control , Dietary Supplements , Humans , Lactoferrin/metabolism , Receptors, Cell Surface/metabolism , Receptors, Coronavirus , Virus Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL